Scientific news

Head in the stars

During the night of July 5 to 6, the Earth will reach its "aphelion", which is the farthest distance from the Sun. This is an opportunity to discover the latest and most powerful telescopes, which allow us to observe our Universe like never before...

The Pic du Midi Observatory in the moonlight
The Pic du Midi Observatory in the moonlight

© Hubert Raguet / Laboratoire de Physique de l'ENS / Observatoire de Paris / Observatoire Midi-Pyrénées / CNRS Images

View the media

During the night of July 5 to 6, 2021, at exactly 00:27 in France, the Earth will reach its aphelion. That means it will be 152,100,527.044 km far from the Sun, the greatest possible distance between our planet and its star. The aphelion is the point in the orbit of an object (planet, comet...) most distant from its star; perihelion on the other hand is when it is closest to its star.

While this event may not be front-page news or have any particular effect on our daily lives, astronomers certainly find it interesting. Stars and planets are after all their passion, and they have not been standing around idle, assisted by increasingly ingenious engineers, in order to create extraordinary equipment to observe the night sky. This has led to a new generation of incredibly powerful telescopes and instruments emerging everywhere from France to Chile, pushing back the limits of the observable Universe and allowing us to explore never before seen regions.

For example, at the Pic du Midi planetology station, the recent infrared camera developed by David Darson takes new images of our solar system while using fewer resources. However, it is in Chile, where low light pollution and close proximity to the equator provide an excellent observation point, that the most ambitious telescopes have been set up in recent years. The Very Large Telescope (VLT) is one of the most widely used instruments in the world, producing more than one scientific publication per day on average. It allows us to observe galaxies at the very edge of the Universe through the Muse and Sphere instruments, produced in French laboratories, and whose incredible history we will be telling you about. Also in Chile, the LSST (Large Synoptic Survey Telescope) is preparing to map the entire Universe in 3D, to produce a 'film' that will help us understand its structure and dynamics. The objective is to learn more about dark matter and dark energy that make up 95% of the cosmos, and also to identify possible near-Earth objects, asteroids that could collide with Earth. Once again, CNRS scientists were involved in the creation of this extraordinary tool. So we invite you to look up at the sky with us through the most incredible telescopes on our planet, and to walk among the stars...

20220018_0001
Open media modal

Noema (Northern Extended Millimeter Array) is the most powerful radio telescope in the northern hemisphere and one of the largest facilities in Europe for astronomical research. Located on the Plateau de Bure in the French Alps at an altitude of 2 550 m, it is operated by the Institut de Radioastronomie Millimétrique (IRAM). Noema has reached its full sensitivity with the commissioning of its 12th antenna in 2022. This network of high precision radio antennas will allow new observations of the…

Photo
20220018_0001
The Noema observatory, equipped with an array of twelve radio antennas
20210040_0001
Open media modal

Télescope Canada-France-Hawaï (CFHT), observatoire astronomique du Maunakea à Hawaï, aux Etats-Unis. Le CFHT est financé par le Canada (CNRC), la France (CNRS) et l'Universite d'Hawaii. Ce télescope fera partie du programme H2020 de l'UE pour améliorer la manière dont les télescopes radio et optiques travaillent ensemble. Grâce à un financement de 15 millions d'euros, le réseau OPTICON-RadioNet PILOT (ORP) a été créé afin d’harmoniser les méthodes et les outils d’observation des instruments…

Photo
20210040_0001
Télescope Canada-France-Hawaï (CFHT), observatoire astronomique du Maunakea à Hawaï
20210073_0001
Open media modal

Grande coupole et son télescope T193 (miroir de 193 cm de diamètre) à l'Observatoire de Haute-Provence (OHP) à Saint-Michel l'Observatoire. Le spectroscope Sophie (installé au télescope de 193 cm, au deuxième plan) a contribué à la détection et à la caractérisation du système exoplanétaire WASP-148. Les scientifiques ont ensuite analysé le mouvement de l’étoile et en ont déduit qu’elle hébergeait deux planètes : WASP-148b et WASP-148c. Ces observations ont montré que les deux planètes étaient…

Photo
20210073_0001
Grande coupole et son télescope T193 à l'OHP à Saint-Michel l'Observatoire
20180074_0030
Open media modal

Faisceau laser issu du télescope MéO, sur le plateau de Calern, à l'observatoire de la Côte d'Azur. Ce télescope Ritchey-Chrétien d'1,50 m de diamètre est utilisé pour des mesures par télémétrie laser de la distance entre la Terre et des satellites. Il possède deux axes de rotation : vertical (azimut) et horizontal (élévation). Les satellites observés sont équipés de rétro-réflecteurs et la Lune, satellite naturel, en possède cinq, déposés par les missions Apollo et Lunokhod. Ils renvoient au…

Photo
20180074_0030
Faisceau laser issu du télescope MéO sur le plateau de Calern
20200074_0004
Open media modal

Françoise Combes, astrophysicienne lauréate de la médaille d'or du CNRS 2020, ici à l’Observatoire de Paris - PSL (LERMA, CNRS / Ecole Normale Supérieure / Univ. de Cergy-Pontoise). Spécialiste de la dynamique des galaxies, elle a mis en évidence de nombreux phénomènes permettant d'expliquer leur formation et leur évolution. Aujourd’hui professeure au Collège de France, elle poursuit ses recherches au Laboratoire d’études du rayonnement et de la matière en astrophysique et atmosphères (Lerma).

Photo
20200074_0004
Françoise Combes Médaille d'or du CNRS 2020
20200014_0017
Open media modal

Coupole Baillaud abritant un instrument d'observation solaire, à l’Observatoire du Pic du Midi. Cette photographie a été réalisée dans le cadre d’une mission à la Station de Planétologie des Pyrénées de l'Observatoire du Pic du Midi. David Darson est venu réaliser des images du système solaire à l’aide d’une caméra infrarouge HDR (High Dynamic Range : à très haute dynamique) qu'il vient de développer et qu’il teste en partenariat avec François Colas, astronome responsable du télescope T1m…

Photo
20200014_0017
Coupole Baillaud à l’Observatoire du Pic du Midi
20180074_0001
Open media modal

Coupole du télescope MéO, sur le plateau de Calern, à l'observatoire de la Côte d'Azur. Ce télescope Ritchey-Chrétien d'1,50 m de diamètre est utilisé pour des mesures par télémétrie laser de la distance entre la Terre et des satellites. Il possède deux axes de rotation : vertical (azimut) et horizontal (élévation). Les satellites observés sont équipés de rétro-réflecteurs et la Lune, satellite naturel, en possède cinq, déposés par les missions Apollo et Lunokhod. Ils renvoient au télescope la…

Photo
20180074_0001
Coupole du télescope MéO, sur le plateau de Calern
20220018_0004
Open media modal

Noema (Northern Extended Millimeter Array) is the most powerful radio telescope in the northern hemisphere and one of the largest facilities in Europe for astronomical research. Located on the Plateau de Bure in the French Alps at an altitude of 2 550 m, it is operated by the Institut de Radioastronomie Millimétrique (IRAM). Noema has reached its full sensitivity with the commissioning of its 12th antenna in 2022. This network of high precision radio antennas will allow new observations of the…

Photo
20220018_0004
The Noema observatory, equipped with an array of twelve radio antennas
20220018_0003
Open media modal

Noema (Northern Extended Millimeter Array) is the most powerful radio telescope in the northern hemisphere and one of the largest facilities in Europe for astronomical research. Located on the Plateau de Bure in the French Alps at an altitude of 2 550 m, it is operated by the Institut de Radioastronomie Millimétrique (IRAM). Noema has reached its full sensitivity with the commissioning of its 12th antenna in 2022. This network of high precision radio antennas will allow new observations of the…

Photo
20220018_0003
The Noema observatory, equipped with an array of twelve radio antennas
20220018_0002
Open media modal

Noema (Northern Extended Millimeter Array) is the most powerful radio telescope in the northern hemisphere and one of the largest facilities in Europe for astronomical research. Located on the Plateau de Bure in the French Alps at an altitude of 2 550 m, it is operated by the Institut de Radioastronomie Millimétrique (IRAM). Noema has reached its full sensitivity with the commissioning of its 12th antenna in 2022. This network of high precision radio antennas will allow new observations of the…

Photo
20220018_0002
The Noema observatory, equipped with an array of twelve radio antennas
20220047_0036
Open media modal

Mesure interférométrique d’une optique en salle propre, visualisation des erreurs résiduelles de la surface optique par rapport à la forme désirée. A la fin du polissage, l’optique est testée dans des conditions environnementales contrôlées pour s'assurer que la courbure et la forme de la surface correspondent aux spécifications. Pour les optiques ultra-précises, l'écart entre les zone plus hautes (en rouge) et les zones en creux (bleu) ne dépasse pas quelques millionièmes de millimètre (nm)…

Photo
20220047_0036
Test final d’une optique en salle propre, mesure interférométrique
20220047_0023
Open media modal

Test d’une optique sur un banc d’interférométrie, pour mesurer la déformation engendrée par la réflexion d'un faisceau lumineux sur l’optique. La mesure est réalisée régulièrement durant le polissage de l’optique pour savoir si la courbure et la forme de la surface correspondent aux spécifications. Cette optique est destinée à l’instrument coronographique du télescope spatial Nancy-Grace-Roman développé par la NASA. Il vise à faire l’image des exoplanètes géantes gazeuses (comme Jupiter) et…

Photo
20220047_0023
Test d’une optique en cours de polissage sur un banc d’interférométrie

CNRS Images,

Our work is guided by the way scientists question the world around them and we translate their research into images to help people to understand the world better and to awaken their curiosity and wonderment.