Open media modal

Uniquement disponible pour exploitation non commerciale

Les sportifs de hauts niveaux ne travaillent pas uniquement leurs muscles, ils entraînent également leurs cerveaux, grâce à la visualisation mentale. Pour rendre compte de ce phénomène, une équipe de scientifiques du CNRS étudient l'activité cérébrale d'Harmony Tan, joueuse de tennis professionnelle, lorsqu'elle s'imagine réaliser des gestes techniques. Conscients de l'importance de cette visualisation mentale, ils ont d'ailleurs mis au point un outil à disposition des sportifs, pour intégrer l…

Vidéo
7866
Dans la tête des athlètes
Open media modal

Uniquement disponible pour exploitation non commerciale

Savez-vous ce qu'est une synapse ? Cela ne vous dit peut-être rien mais c'est une zone qui permet à nos neurones de communiquer entre eux. Nous en possédons chacun un million de milliard ! Les scientifiques se plongent actuellement dans l'infiniment petit pour étudier ce réseau très dense et complexe. De quoi permettre un jour de mieux appréhender le cerveau et les pathologies pouvant le toucher.

Vidéo
8009
Notre cerveau en super résolution
Open media modal

Uniquement disponible pour exploitation non commerciale

Alors que les JO de Paris approchent à grands pas, tous les athlètes s'entraînent pour grappiller encore quelques millimètres ou quelques centièmes de seconde. C'est là que la science peut entrer en jeu : analyses ultra-poussées, équipements de pointe ou environnements en réalité virtuelle, ce nouvel épisode de VaSavoir vous emmène à l'Institut des sciences du mouvement, à Marseille, où les chercheurs tentent d'améliorer les performances des plus grands athlètes... comme des sportifs du…

Vidéo
8010
Sport dopé par la science (Le) ? - Va Savoir #07
20240027_0001
Open media modal

Cellules microgliales (en jaune) dans la région de l'hypothalamus d'un cerveau de souris ayant consommé un régime alimentaire pro-inflammatoire enrichi en huile de tournesol, vues en microscopie confocale. Les lipides inflammatoires contenus dans cette huile sont suspectés d'être à l'origine du déclenchement de l'activation des cellules microgliales (des cellules du système nerveux central) qui développent alors une forme très ramifiée. Cette image a été produite dans le cadre d'une étude sur l…

Photo
20240027_0001
Cellules microgliales, hypothalamus d'un cerveau de souris, après un régime alimentaire riche en oméga 6
20240029_0001
Open media modal

Visualisation de la "profondeur sulcale" sur un cortex cérébral (la profondeur des sillons du cortex), obtenue par des algorithmes, avec les zones superficielles en rouge et les zones profondes en bleu. Le cortex est l'enveloppe externe du cerveau. Il participe aux fonctions cognitives liées à la sensorialité, au langage, à la motricité, etc. Chez l'humain, il présente une géométrie complexe composée de sillons qui augmentent la surface de cortex disponible pour les neurones et leurs connexions…

Photo
20240029_0001
Visualisation de la "profondeur sulcale" sur un cortex cérébral, obtenue par des algorithmes
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Tâm Mignot, Médaille d'argent 2023 du CNRS, directeur de recherche en microbiologie et directeur du Laboratoire de chimie bactérienne. Myxococcus xanthus est une bactérie prédatrice essentielle à l'écologie des sols. Elle est capable de se déplacer en glissant sur des surfaces solides pour se nourrir d'autres micro-organismes. Elle est au coeur des travaux de renommée internationale de Tâm Mignot qui a notamment découvert le mécanisme moléculaire qu…

Vidéo
7814
Médaille d'argent 2023 : Tâm Mignot, chercheur en microbiologie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Hélène Launay, Médaille de bronze 2023 du CNRS, chargée de recherche au laboratoire Bioénergétique et ingénierie des protéines (BIP), elle déchiffre les régulations impliquées dans l'assimilation du CO2 chez les microalgues. Hélène Launay est spécialisée en biochimie structurale qu'elle étudie grâce à la Résonnance magnétique nucléaire (RMN). Elle a forgé son expertise dans cette technique au cours de son doctorat, obtenu en 2011, et de ses deux postdoctorats…

Vidéo
7816
Médaille de bronze 2023 : Hélène Launay, chercheuse en biochimie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Isabelle Dautriche, Médaille de bronze 2023 du CNRS, chercheuse au Laboratoire de psychologie cognitive, spécialiste du développement du langage chez le nourrisson et l'enfant humain. De leur premier mot jusqu'à la formulation et la compréhension de phrases complexes, comment les enfants apprennent-ils leur langue en à peine quelques années ? Derrière cette étonnante facilité d'apprentissage se cache pourtant un problème complexe. Isabelle Dautriche, entrée au CNRS…

Vidéo
7817
Médaille de bronze 2023 : Isabelle Dautriche, chercheuse en développement du langage
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Julie Déchanet-Merville, Médaille d'argent 2023 du CNRS, directrice de recherche en immunologie et directrice du laboratoire Immunologie conceptuelle, expérimentale et translationnelle. Après son doctorat en immunologie, Julie Déchanet-Merville se focalise sur les réponses immunitaires impliquées dans le contrôle des infections par le cytomégalovirus survenant chez les patients immunodéprimés. Elle démontre l'importance du rôle joué par les lymphocytes T de type…

Vidéo
7824
Médaille d'argent 2023 : Julie Déchanet-Merville, chercheuse en immunologie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Mathieu Letellier, Médaille de bronze 2023 du CNRS, chercheur en neurophysiologie à l'Institut interdisciplinaire de neurosciences, spécialiste des mécanismes moléculaires et cellulaires de la plasticité synaptique. La plasticité est l'incroyable capacité de notre cerveau à se réorganiser en fonction de notre environnement. Elle joue un rôle essentiel pendant le développement, mais aussi lors de processus adaptatifs comme l'apprentissage et la mémoire. À…

Vidéo
7826
Médaille de bronze 2023 : Mathieu Letellier, chercheur en neurophysiologie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Amélie Bernard, Médaille de bronze 2023 du CNRS, chercheuse en biologie végétale au Laboratoire de biogenèse membranaire, spécialiste de l'autophagie et des processus d'adaptation des plantes. L'acclimatation des plantes aux contraintes environnementales est une question centrale dans les recherches d'Amélie Bernard. Après une thèse sur l'importance des lipides dans la réponse des plantes à la sécheresse, la chercheuse se concentre sur l'étude de l'autophagie au…

Vidéo
7828
Médaille de bronze 2023 : Amélie Bernard, chercheuse en biologie végétale
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait d'Antone Coulon, Médaille de bronze 2023 du CNRS, chercheur en biologie au laboratoire Dynamique du noyau, spécialiste de la dynamique spatio-temporelle des chromosomes. Le noyau de nos cellules contient notre matériel génétique, mais est aussi le centre décisionnel pour l'expression des gènes. Cette fonction, essentielle pour l'organisme, fascine Antoine Coulon dont les recherches visent à mieux comprendre l'organisation, la dynamique et la mécanique des chromosomes…

Vidéo
7839
Médaille de bronze 2023 : Antoine Coulon, chercheur en biologie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Matthieu Pied, Médaille d'argent 2023 du CNRS, directeur de recherche en biologie cellulaire spécialiste des mécanismes de migration et de division des cellules au sein du laboratoire Biologie cellulaire et cancer. Physicien de formation, Matthieu Piel obtient un doctorat en biologie cellulaire en 2001, soulignant son engouement pour l'interdisciplinarité. Il s'intéresse à l'architecture des cellules en vue de comprendre comment ces dernières se déforment dans un…

Vidéo
7842
Médaille d'argent 2023 : Matthieu Piel, chercheur en biologie cellulaire
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Léïla Perié, Médaille de bronze 2023 du CNRS, directrice de recherche en biologie cellulaire au Laboratoire physico-chimie Curie, spécialiste de la différenciation cellulaire des cellules sanguines. Leïla Perié mène des recherches originales sur la production des cellules immunitaires et sanguines et comment celles-ci s'adaptent aux demandes changeantes de l'organisme. Elle utilise des modèles mathématiques et des techniques expérimentales de pointe, lui permettant de…

Vidéo
7846
Médaille de bronze 2023 : Léïla Perié, chercheuse en biologie cellulaire
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Sébastien Janel, Médaille de bronze 2023 du CNRS, ingénieur de recherche et coordinateur de la microscopie à force atomique de l'équipe Microbiologie cellulaire et physique de l'infection au Centre d'infection et d'immunité de Lille (CIIL). Sébastien Janel conçoit et réalise des expériences de microscopie à force atomique (AFM) au sein du Centre d'infection et d'immunité de Lille. Ce type de microscopie permet notamment d'analyser la surface d'objets à l'échelle…

Vidéo
7864
Médaille de cristal 2023 : Sébastien Janel, ingénieur en microscopie
Open media modal

Uniquement disponible pour exploitation non commerciale

Portrait de Claire Monge, Médaille de bronze 2023 du CNRS, chercheuse en biotechnologie spécialisée dans l'ingénierie de dispositifs de vaccination par voie muqueuse au sein du Laboratoire de biologie tissulaire et d'ingénierie thérapeutique. Et s'il était possible de prendre un vaccin qui fond sous la langue plutôt que de se le faire injecter par une seringue ? C'est un des enjeux des travaux menés par Claire Monge. Ses recherches en ingénierie thérapeutique se concentrent sur le…

Vidéo
7941
Médaille de bronze 2023 : Claire Monge, chercheuse en biotechnologie
Open media modal

Portrait de Mathilde Paris, Médaille de bronze 2023 du CNRS, chercheuse en évolution et développement à l'Institut de génomique fonctionnelle de Lyon, spécialiste de l'étude bio-informatique de génomes animaux. Quelle est la différence entre une patte de crustacé et sa remplaçante régénérée après une amputation ? Aucune, le nombre et la proportion des types cellulaires sont identiques. Mais la régénération n'est pas pour autant une répétition du développement. Elle fait appel aux mêmes…

Vidéo
7946
Médaille de bronze 2023 : Mathilde Paris, chercheuse en évolution et développement
20240011_0001
Open media modal

Préparation d’un milieu de culture de cellules sous hotte stérile. Les scientifiques travaillent sur des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), cultivés in vitro. Des boîtes de Petri contenant un gel aux propriétés élastiques définies sont préparées sous une hotte stérile. Les cellules étudiées sont placées sur ce gel avec du milieu de culture…

Photo
20240011_0001
Préparation d’un milieu de culture de cellules sous hotte stérile
20240011_0002
Open media modal

Préparation d’un milieu de culture de cellules sous hotte stérile. Les scientifiques travaillent sur des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), cultivés in vitro. Des boîtes de Petri contenant un gel aux propriétés élastiques définies sont préparées sous une hotte stérile. Les cellules étudiées sont placées sur ce gel avec du milieu de culture…

Photo
20240011_0002
Préparation d’un milieu de culture de cellules sous hotte stérile
20240011_0003
Open media modal

Mise en culture de cellules de mammifères sous conditions contrôlées. Les boîtes de Petri contenant des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), ainsi que leur milieu de culture, sont placées dans un incubateur pendant 48h à 37 °C. Cette étape permet aux cellules de croître. Les scientifiques cherchent à mieux comprendre les adaptations et les…

Photo
20240011_0003
Mise en culture de cellules de mammifères sous conditions contrôlées
20240011_0004
Open media modal

Vérification visuelle de la mortalité de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Les…

Photo
20240011_0004
Vérification visuelle de la mortalité de cellules de mammifères cultivées in vitro
20240011_0005
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0005
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0006
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0006
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0007
Open media modal

Observation de cellules de mammifères cultivées in vitro. Après s’être développés dans des conditions contrôlées, les cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et les fibroblastes humains (cellules principales du tissu conjonctif) sont examinés au microscope. Ce dernier permet de vérifier l’aspect des cellules, notamment leur croissance ou leur mortalité, dans chacune des boîtes de Petri. Un écran relié au microscope…

Photo
20240011_0007
Observation de cellules de mammifères cultivées in vitro au microscope
20240011_0008
Open media modal

Préparation d’échantillons de cellules de mammifères cultivées in vitro pour les observer en microscopie à fluorescence. Des lamelles contenant des cellules souches mésenchymateuses humaines (cellules capables d’agir sur la réparation et la régénération des tissus) et des fibroblastes humains (cellules principales du tissu conjonctif), sont préparées pour être observées en microscopie à fluorescence. Au cours de cette expérience des protéines et des molécules d’intérêts (ici la lamine, l’actine…

Photo
20240011_0008
Préparation d’échantillons de cellules de mammifères cultivées in vitro pour les observer en microscopie à fluorescence
20240011_0009
Open media modal

Utilisation de la microscopie à fluorescence pour l’observation de cellules de mammifères cultivées in vitro. La microscopie à fluorescence permet de caractériser les modifications morphologiques des cellules, notamment de leur cytosquelette, qui est la composante structurale principale des cellules. Les protéines d’actine sont marquées en rouge permettant la visualisation des fibres d’actine, clé de voute du cytosquelette. La lamine qui délimite les noyaux des cellules est marquée en vert et…

Photo
20240011_0009
Utilisation de la microscopie à fluorescence pour l’observation de cellules de mammifères cultivées in vitro
20240011_0010
Open media modal

Préparation d’une électrophorèse sur gel d’agarose permettant la migration de l’ADN. Des échantillons d’ADN, extraits de cellules cultivées sur des gels de différentes rigidités, sont prélevés et placés dans chacun des puits de la machine. Un courant électrique traversera le gel et permettra, au bout de 25 minutes, la migration des fragments d’ADN dans le gel afin de les séparer selon leur taille. L’ajout d’un ligand à la solution permet de bien visualiser la migration des échantillons d’ADN…

Photo
20240011_0010
Préparation d’une électrophorèse sur gel d’agarose permettant la migration de l’ADN
20240011_0011
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0011
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0012
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0012
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0013
Open media modal

Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV), après réalisation d’une électrophorèse d’ADN. La lumière UV permet de révéler chaque molécule d’ADN présente dans le gel d'agarose. Ici, la chromatine a été fragmentée par des ultrasons. Dans les cellules, l’ADN est empaqueté grâce à des protéines (notamment les histones), ce qui constitue la chromatine. Les fragments vont ensuite permettre de capturer des protéines spécifiques interagissant avec leurs régions d…

Photo
20240011_0013
Visualisation de la migration de fragments d’ADN sous lumière ultraviolette (UV)
20240011_0014
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0014
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0015
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0015
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0016
Open media modal

Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine (ChIP). Cette méthode permet l'étude des protéines interagissant avec un fragment précis d'ADN. Au cours de cette manipulation, les protéines d’intérêt, qui sont liées à leurs régions d’ADN cibles, sont capturées grâce à des anticorps couplés à des billes magnétiques. Après séquençage, cela permet de déterminer les régions du génome humain qui sont ciblées par les protéines régulant l…

Photo
20240011_0016
Préparation de billes magnétiques sur aimants pour la technique d’immunoprécipitation de la chromatine
20240011_0017
Open media modal

Discussion concernant la partie bio-informatique du projet MecEpi. L’objectif de ce projet est de mieux comprendre les adaptations et les réponses des cellules souches mésenchymateuses et fibroblastes humains aux stress mécaniques. Après une phase de séquençage, les données sont analysées. Les régions du génome humain qui sont ciblées par les protéines régulant l’expression des gènes sont déterminées. Les scientifiques comparent les échantillons résultant de différentes conditions de culture …

Photo
20240011_0017
Discussion concernant la partie bio-informatique du projet MecEpi
20240011_0018
Open media modal

Discussion sur les résultats et avancées du projet MecEpi. L’objectif de ce projet est de mieux comprendre les adaptations et les réponses des cellules souches mésenchymateuses et fibroblastes humains aux stress mécaniques. Ainsi, les scientifiques sont parvenus à définir les gènes dont l’expression varie en fonction des conditions mécaniques (conditions de culture sur gel souple ou rigide). Grâce à des outils de génomique, ils ont pu caractériser les modifications de l’organisation 3D du…

Photo
20240011_0018
Discussion sur les résultats et avancées du projet MecEpi
20230106_0024
Open media modal

Test de diffusion d'un colorant dans une puce microfluidique. Ce système sera utilisé pour la culture de types cellulaires distincts dans deux compartiments physiquement séparés. Les scientifiques s'intéressent aux interactions entre les cellules du système immunitaire et celles présentes dans leur environnement. L'un de leurs axes de recherche consiste à déterminer le rôle des neurones sensoriels dans la régulation des réponses immunitaires dans la peau humaine.

Photo
20230106_0024
Test de diffusion d'un colorant dans une puce microfluidique

CNRS Images,

Nous mettons en images les recherches scientifiques pour contribuer à une meilleure compréhension du monde, éveiller la curiosité et susciter l'émerveillement de tous.